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A kinetic equation for the density matrix of a monomode laser with explicit 
coupling with a thermal reservoir representing the cavity and a nonthermal 
one representing the pumping mechanism is derived. The macroscopic 
behavior of this system, inferred from Glauber's P function, is discussed 
within the framework of Glansdorff-Prigogine's theory of far-from-thermal- 
equilibrium open systems. 
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1. INTRODUCTION 

The quantum theory of a laser oscillator is a fascinating problem in the sense 
that it deals with physical and mathematical concepts which are of  primordial 
interest in contemporary physics. (l-a) Effectively this typical nonlinear system 
has to be described within the framework of nonequilibrium statistical mech- 
anics as it consists of  an open system in contact with two reservoirs, a thermal 
o n e - - t h e  c a v i t y - - a n d  a non the rma l  o n e - - t h e  lasing m e d i u m - - a n d  its distr i-  
bu t ion  funct ion,  in the coherent  representa t ion ,  obeys  a general ized F o k k e r -  
P lanck equat ion.  Moreover ,  as a f a r - f rom- the rmal -equ i l ib r ium system, its 
macroscop ic  behav ior  deals  wi th  s tabi l i ty  p rob lems  for  the s t a t ionary  states, 
and  the poss ible  emergence o f  a coherent  s tate invites analogies  with the 
appea rance  o f  a diss ipat ive s t ructure  as well as a second-order  phase  t ran-  
sition.<~-6) 
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The aim of this paper is to give a contribution to the study of the relation 
between a microscopic and a macroscopic description of this system. 

We derive a kinetic equation for the density matrix of the monomode 
laser model studied in a previous paper (hereafter designated I) (v but with an 
explicit pumping mechanism. For low concentration in active material we 
obtain, within the framework of the Prigogine-R6sibois theory of non- 
equilibrium statistical mechanics, (a~ a set of two coupled kinetic equations 
for the diagonal parts of the density matrix developed in a series of orthogonal 
operators. We recover, in the Markovian limit, Mandel's equation for a 
high-intensity laser. Since the macroscopic behavior of this system is described 
in Glauber's P function, (~~ we may calculate, in the limit of weak fluctuations 
around macroscopic variables, the entropy production of this system. This 
quantity is found to be positive, and the stability of the macroscopic stationary 
state may be discussed within the framework of Glansdorff-Prigogine's 
stability criterion. ( ~  

In Section 2 the kinetic equation for the density matrix is derived, while 
approximate solutions are given in Section 3. The entropy production and 
the stability properties of the stationary state are discussed in Section 4, and 
formal or technical aspects have been postponed to the Appendix. 

2. KINETIC E Q U A T I O N S  

We consider a monomode laser model described by a Hamiltonian which 
is an extension of the one studied in I. A pumping field is introduced explicitly 
since the pumping has to be a dynamical process rather than a static one. 
The Hamiltonian may then be written as follows (the notation is defined in I): 

H = HDlek e -[- Hrleldoavity q- H v ~ .  (1) 
with 

N N 

HDlck~ = hf2 ~ S~ ~ + h~a+ a + A ~ (S~+ a + S,-a +) 
~=I ~=i 

HFleidoavity = ~ hc%a~+a~ + ~ g ~ ( a ,  +a + a~a +) 
~ (2) 
N 

Hpamp= hw, a.+a, + + S~-a,~ +) 

+ g~+(S,+a, + + S~-a,)] 

Moreover, we consider a situation where the direct spin-spin coupling and 
the coupling through the laser field are weak. This situation occurs in a laser 
with low concentration of active material where the probability of "re-  
collision" of atoms is negligible and corresponds to a mean field approxima- 
tion. 
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With these approximations the density matrix may be factorized, and, 
since we are only interested in the properties of the atoms and of the laser 
mode, we trace this density matrix over all heat bath variables; consequently, 
p(t) = Tr' r ( t )  may be written as a series of orthogonal operators (12) 

N 

p(t) = 1--[ [p~~ + p~z)(t)S,z + p~+)(t)S~ + + p~-)(t)S,-] (3) 
i = l  

Furthermore, since all spins are equivalent, p}~)= p(~). We work in the 
diagonal representation for av+av and Sd and, in the corresponding (v, N) 
representation 

[A~(N) = <S + �89 - �89 IN> = FL.~ [m~>]N~>, a+alN> 
= N[N>, S([m~> = m~lm~>], 

p(t) may formally be written as the iterative solution of the Liouville-von 
Neumann equation, which is, in the interaction picture 

{(1).f ) G(N, t) = ~" m=o ~ Tr' ~ d~<,~I[)7(~-)I"I,/>G(N, 0) (4) 

where the v, N variables are those of the total system while v, N belong to 
the proper laser system only. We have 

<vlj(r)lv'> = rl-v'~'~_v.(g, r)rt ~ - vr r)v -~ (5) 

with 

"q~f(N) = f ( N  + �89 

~(~) = u ( ~ ) v u  +(~) 

U(r) = exp i[f2 ~ Si~+ ~oa+a + ~e~ + ~~ z (6) 

N 

V = A ~. (S,+a + S,-a +) + ~. g.(a~+a + a~a +) 
i=l ~c 

N 

+ ~_, ~.  [g~-(S,+aa + S~-a~ +) + g~+(S~+a. + + S~-a~)] 
a* i=l 

The initial density matrix is taken as 

1 ,~ (1 + aS~ ~) ~ p~ ~ p,~p (7) r(0)  = ~ , = ~  ~ 

with - 2  ~< a ~< 0; p, p~, p~ are equilibrium field density matrices anG in 
order to simplify the calculations, they will be chosen as zero-photon-density 
matrices. 

The kinetic equation for p may now be derived (see details in the Appen- 
dix) along the same lines as in ]. Taking first the thermodynamic limit on the 
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heat baths, we renormalize the spin propagators and the photon ones by their 
interactions with their respective heat bath, and, since these baths are taken 
to be singular, the contribution of the Laplace transform of a photon 
propagator is now 

2 
(z + x)-L x = ~ ~ Igd 2 (8) 

while the plus and minus spin propagators become, respectively, 

(z + y+)[z(z + y)]-l ,  (z + y-)[z(z + y)]-* (9) 

with 

2 Y =  y+ r + = g ~ l g = * l  = , _  +~'- 

The irreducibility condition is chosen to be the one associated with the 
vacuum [0}(0[, and the diagonal part of p obeys the integrodifferential 
equation (8) 

~tP(o~)(N,t)=~wfdrG(e'e"(N,N'lt-r)p~')(N',r), t , / '  = 0,2 (10) 

The nondiagonal parts are given by 

p(~'(N, t)= ~ ~N,, f dr ,-vor'(6'E't'r,l,, N'It - r)/o"(N', r) (11) 

As a consequence of the low-concentration approximation, these terms are 
small and will not be considered since we are concerned with photon and 
atom distributions. However, they may be important for some problems, e.g., 
frequency shifts, spin-field correlation functions, etc. 

The kernels G~o',")(N, N'lr ) contain three parts: 

(1) the explicit photon-cavity coupling (cf. I) 

--xNSN,N, + x(N+ 1) SN+I,N, in G~o ~176 

(2) the explicit pumping terms (cf. Appendix) 

- y  See,N, in G~o 2'2) and 7~78N.N, in G(o 2,~ 

(3) the contributions due to the Dicke Hamiltonian itself with renormalized 
spin and photon propagators. 

These contributions may be decomposed in a series of one-, two-, .... 
N-spin field interactions, respectively (cf. Fig. 1) 

~b = ~ ~b t + ~ ~b~.j + ... (12) 
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~I  i 

d~i= 
_+I 

i'1 i ; l i  ;.1 i ~.1 i 

qJi,j = § * 
_+1. - -+1. " �9 J + l j  j 

Fig. 1. Diagrammatic representation of the kernel of Eq. (10). 

Since h is propor t iona l  to V-  z/2, these interactions are propor t ional  to powers 
of  the spin concentra t ion (Z~= 1 ~b~ ,,, NA 2, h ~ A* V-  1/2, Z~= 1 ~bi ~ c h*2, 

:~,~.j= 1 ~ , j  ~ c~a*~). 
For  weak c we may  consider only the one-spin term, this approximat ion 

being consistent with the factorizat ion of  the density matrix. The kinetic 
equat ions for  the diagonal par t  of  p may  finally be written, in the Markovian  
limit, 

atpCo~ t) = - x [ N  - (N  + 1)~2]p(o~ t) 

- q{[2N + 1 - (N + 1)~ 2 - N~-2]pCo~ t) 
+ [1 + (N + 1)7 2 - N~-2]p(oZ)(N, t)} 

Otp(oZ)(N, t) = -rp(o~)(N, t) + y~Tp(o~ t) 

- q'{(2N + 1 + (N + 1)~ 2 + N~-2)p( f (N,  t) 
+ [1 - (N + 1)V 2 + N~7-2]p(o~ t)} (13) 

In the Glauber -Sudarshan  (lm representat ion defined by 

= (1~,of d2a P(a, a*, t)]a)(a], p(t) 

P~ a*, t) and PZ(a, a*, t) associated with p(o~ t ) and p(o~)( t ) obey the following 
coupled Fokker -P lanck  equations:  

atP~ a*, t) = ~ a + ~ cz* [xPO(a, a*, t) - qP~(a, a*, t)] 

~2 
+ q ~ [po(a, a , ,  t) + PZ(a, a*, t)] 

~tP~(a, a*, t) = -7[P*(a,  a*, t) - ~P~ a*, t)] 

- q' 21~l=P*(a, ~*, t) - ~ + ~* 8a* aa aa* 

x [po(a, a*, t) + P*(a, a*, t)]'~ (14) 
) 
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3. A P P R O X I M A T E  SOLUTIONS A N D  C O M P A R I S O N  W I T H  
OTHER THEORIES 

In this section we discuss the relations between this theory and others 
and we present approximate solutions of Eq. (14) using physically meaningful 
assumptions. Note first that, since the characteristic time of the evolution of 
pz is of order 7'- 1, it varies slowly on the Markovian time scale and 

P~(c~, ~*, t) -- P~(% c~*, 0) exp[ -@ + 2q'l=12)t] 
/ t l  t 

+ jo d r ( e x p [ - ( y  + 2q'l~12)(t - ,)]} 

so its long-time limit may be written 

c~*, t) = s(~, ~,)p0(~, ~,, t), ( s  z) = { f d2~ sP ~ 
J 

with 

[ e~ s(~, ~*) = (~ + 2q'1~[2) -1 77 + 2q']~12(e~ -1 ~1~1 = _1 (16) 

So the Markovian limit of (14) consists in the following Fokker-Ptanck 
equation: 

~,p0(~, ~, ,  t) = ~ ~ + ~ ~* [x - qs(~, ~*)1 

~2 
x P~ c~*, t) + q ~ [1 + s(~, c~*)P~ ~*, t)] (17) 

The technique used to obtain the kinetic equation (14) may easily be 
shown to be equivalent to Haake's technique/TM The new feature here is that 
the decomposition of the density matrix in a series of orthogonal operators 
and the mean-field approximation we made on it lead to an evolution operator 
which contains the complete one-atom contribution to all orders in the coup- 
ling constant. By this method we recover in fact in a direct and elegant way 
the equation derived recently by Mandel~9) after a complete resummation of 
the one-atom collision operator considered as a power series in the coupling 
parameter. 

The time evolution of P~ c~*, t) may now be discussed through 
approximate solutions of Eq. (17). We shall only consider situations with 
~7 ~> 0, which are the only significant ones since for r/ < 0, P~ c~*, t) behaves 
like the initial chaotic distribution. [Note that for ~ _ 0 we have to take 
into account the P~ ~*, t) term of (16).] 
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Developing P~ ~*, t) as 7~k ck(t)lc~l 2 exp[-A(t)]~l  2] in order to avoid 
convergence difficulties with the power series, and to put more light on the 
"dis tance"  from the chaotic distribution, we obtain through (17) the following 
equations, in the long-time limit: 

C~(t) = {A(t) - (X - qT)[q(1 + 7)]-1}Co 

4q27 
Q ( t )  = I(X - qT)2Cl( t )  - - - ~  Co](4q(1 

while 

+ 7) ]  -~  (18) 

x f l  = . 4  < = A < ( x  - q7) - q(1 + 7 ) A  <2 for 7 < < ~ = 7 o  

A = A ~ 2q27 A ~ for ~-~ 7 ~ 7c 

2q27 A >2 for >> A = A  > = ( x - q 7 ) - q ( 1  + 7 ) A  > + - ~ -  7 ~7~ 

(19) 

so that we have, respectively, 

A<(t) = (X - q~){q(1 + 7) + % exp[- (X - q7)t]} -~ 

A~ = ]3o e x p ( 2 q 2 7 t )  
- T N -  (20) 

A>(t) = (X - qT)[q( 1 + 7)] -1 + ~'o exp[-q(1  + 7)t] 

x 1 + ~o exp ~ q-(1 ~-" ~-) t 

P ~  evolves to its stationary value with decay rates ,~ which are schematically 
represented in Fig. 2 and agree with other results (14) except that above 
threshold we do not recover the degeneracy of the/~.(12) 

The stationary solution of (17) is 

P~~ ct*) = Q-1 )' + 2q'l~l 2 
r(1 + 7) + 2q'l~[ = 

x p,(1 + 7) + 2q'1~12] ('/2~'''(1+'~ 
),(1 ~ ~ ] exp(-7c[al 2) (21) 

where Q is the normalization constant. The corresponding value of s(~, ~*) 
is ~,-q(~, + 2q'lal2) -~. We see that for 7~ > 1 the maximum o f P  ~ is given by 
ff = if* = 0, po being roughly Gaussian, while for 7~ < 1 and 7 > ~ ,  po has 
its maximum at [~]2 = (~,N/2q)[(7/%) - 1]. When the cavity losses are small 
and the pumping is strong, the peak is sharp and the system behaves nearly 
coherently. 
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Fig. 2. Dependence of the decay rates ofP~ ~*, t) vs. the pump parameter ~/(arbitrary 
scale). 

As discussed by Mandel, the maximum of the stationary distribution (21) 
is, to vanishingly small correction 7N(*I - V~)/2X, above threshold and may 
differ strongly from Risken's (15~ result: 7 N ( ~  - ,1~)/2q~7 in our notation. 

These facts are among those which led to the comparison of this behavior 
with a second-order phase transition (4~ and the expression of p0 as the 
exponential.of a thermodynamic-like potential obtained by developing p0 in 
powers of  % ~*: 

p0(% a . )  = Q-~ e x p [ - a ( ~ ,  ~*)/a] 
(22) 

G(% c~*) = [(a, - ~)1~1 ~ + KI~I ~ + ...] + a (0 )  

with 

q2r/ cr c 
= q(1 + ~/), a~ = q(l + ~7~), ~c - 

7 N  '~ 

More interesting is the fact that the mean value of which may be 
calculated f rom (21), consists of two parts;  the first part, proportional  to N, 
is precisely the value of that maximizes po, while the other part, propor-  
tional to 1, may be neglected when N is great. So the separation between the 
classical and quantum effects, extensively discussed by Lieb and Hepp, (16~ 
is recovered. Note that at threshold ([c~[ 2) is proportional to N 1/2, as in all 
the theories where the asymptotic time limit t ~ o~ is taken prior to any 
eventual thermodynamic limit for the proper laser system itself. This leads 
to the macroscopic description of the monomode  laser of  Ginzburg-Landau 
type, as has been discussed elsewhereJ 4,5~ It  is important  to note that the 
fluctuations around the macrostate, which play an essential role in any 
realistic situation where N remains finite, are deduced f rom the microscopic 
theory. 
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The Ginzburg-Landau description of this system led to the comparison 
of the laser transition with a second-order phase transition, but with the 
creation of a dissipative structure. Let us briefly recall that (11~ there exist 
systems which may have two different types of behavior: 

A tendency to reach states of maximum disorder with destruction of 
structures. This behavior occurs mainly near the thermodynamic 
equilibrium. 
A coherent behavior with creation of structures that may occur far from 
equilibrium. This ordering mechanism arises in open systems at a critical 
distance from equilibrium. The structures that are created in this 
situation are called dissipative structures. 

Glansdorff and Prigogine have shown (11~ that there is a general theory 
underlying the mechanism by which a system is driven to a new thermo- 
dynamic behavior beyond the instability of the thermodynamic one. This 
theory was developed for systems whose macroscopic description is based on 
the local equilibrium assumption. 

We show in the following section in what sense laser action above 
threshold may be considered as a dissipative structure. Furthermore, the 
entropy production of this system is shown to obey the general Iaw of the 
thermodynamics of irreversible processes in the absence of any local equi- 
librium assumption, which has obviously no sense in laser physics. 

4. ENTROPY PRODUCTION A N D  STABILITY 

The analogy of the laser transition to a second-order phase transition, 
the interpretation of the macroscopic state corresponding to laser action as 
a dissipative structure, and the relation between the macroscopic variables 
~, ~* and the maximum of the Glauber-Sudarshan distribution function 
suggest the use of this distribution to discuss macroscopic aspects of this 

system, the mean value of an operator O being <O> = (lfir)f d2~ P~ > 

(the macroscopic variable 0 is the value of (a I O[~) in the macroscopic state 
if, g* of the system). 

'The entropy of the laser field is defined as 

S = -(k/Tr)f d2~ po(~, ~,, t)<c*] In p~ (23) 

where p0 is the solution (17); the addition of high-intensity terms would only 
add small corrections but would not modify our conclusions. The entropy 
production may be written as 

diS 2k ~ d2~ po(~, e~., t)l(qse~ _ q(p0)_18~.(1 + s)po)~(% =,,t) ] (24) 
~ = -d7  --- -g-  d 
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with 

~'(~, ~*, t) = - ~ @ 1  In p~ (25) 
Since 

[al2Nexp(_ [~12) o~-(~, c~*, t)  = c~* 
N! 

ln[1 _ f d2fl ]fl]2(N+l)(exp-[fl[2)(O/O]fl[2)P~ fl*, t)] x [ f d2B [/3[2(~+l)(exp_ [fll2)p0(fl, fl,, t) l 

and due to the fact that f d2aP~ 1, the entropy production is always 
positive. On the other hand, the macroscopic state of the system obeys the 
following evolution equations: 

& = - (X - qg),7 
= 7 )  - 2p'gl l  (26)  

which are compatible with Lieb and Hepp's results/16~ We see that for 
~ > 1 there exists only one stable stationary solution ~ = 0, g = ~ and that 
for ~ < 1 and ~ > ~/~ an infinite set of stable solutions branch from ff = 0, 
g = 7, namely, 

1/2ei~ 2~r), 

while the first one becomes unstable. The entropy associated with the 
macroscopic state (~, ~*) of the laser system is - k ( ~ ]  In p0]~). While most 
of the concepts of irreversible thermodynamics are not applicable here, some 
interesting analogies with situations where a thermodynamic potential exists 
or where the local equilibrium assumption makes sense can be made. Since 
[~1 effectively plays the role of the order parameter of equilibrium phase 
transition and 7/is equivalent to the temperature, we see, for example, that at 
stationarity the macroscopic entropy ~ has a discontinuity in V at threshold as 

kalo 
~ I -T0-b'-~ ,o for ~ < ~ r  

0"'~ In, = k OI0 
(27) 

-To-~-~ ~ o - ~ l n l l [ , ~  for ~> '1~  

where 
F 

I~ = J d2/3 I/3[2~(exp -1/312)P(/3, 8*) 

Moreover, the entropy production associated with the stable macroscopic 
state is, at stationarity, 
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P 
s 

/__ 
Fig. 3. Representation of the entropy production for the macroscopic stationary state 

vs. 7. 

t 
O for ~=O,~--- 

2kq t + ~ ~ [ I,~,~TN]] (28) 

~ = [ f o r  [~J~=~X N(,1-vr g=Vo 

Near threshold ~ behaves like V - V~, while far above threshold its behavior 
is nearly constant. ~ / ~  shows a discontinuity at threshold which is repre- 
sented in Figs. 3 and 4. 

The macroscopic interpretation of (23) suggests that ~ may be put into 
the thermodynamic form 

= J~X~ + J~.X~. (29) 

/50 

Fig. 4. Representation of the variation of entropy production for the macroscopic 
stationary state vs. n. 
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with 

J~ = qsa - qp-1 ~ (1 + s)P 

(30) 
xo=-kO ea <al In pla> 

<a I In plc~> plays the role of a pseudo-thermodynamic potential. The general- 
ized force is zero for macroscopic states on the equilibrium branch (ff = 0) 
and is nonzero on the other branch. Moreover, 

s = y + 2p'l=l ~ 

It is interesting to note that the relation between Ja and Xa is linear only on 
the equilibrium branch and that the generalized Onsager coefficient (2q~/k)F(O) 
becomes negative above threshold 

F - I n  f d2fl (exp-I~I~)P ~. 1(0) 
f d2fl [fil2(exp_ [fl[2p ] 

The variation of the entropy production due to these thermodynamic-like 
forces may be calculated in the macroscopic picture. It is zero at stationarity, 
and its dominant part may be written 

d x # _  kqg[al2 [(x - qg)2 + qy~ - qg(7 + 2p'lal~)] (31) 
dt 1 + ~  

which is always negative since g ~< y~(Y + 2P'[ff]2) -1. 
Furthermore, the stability of the system in the vicinity of the stationary 

macroscopic state may be discussed as follows. It is easy to show, using 
(17)-(21), that 

- I = - k P -  [-b'~ [~?~ + 0~ ---~ [st ] (~1 In p[~> = 0 (32) 

while 

- lrP-f i  I ~o2- -P  st 1~[2  = - kP-  [~a2 [st (~)2 + 2 

+ ~ s (8~*) 2 (ffl In plff> (33) 

The laser system may be considered as an open system in contact with 
two heat baths: the cavity and the pump; the coupling with the cavity is 
constant, while the coupling with the pump varies. So if we subtract from 82s 
the effect of the variation of s due to the internal processes of the heat bath, 
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namely,  the effect cor responding  to the 7(s - "1) te rm in ~, we obtain at  
s ta t ionar i ty :  

and 

a~G ~ 1 .,,~ + (4xh, ) l~ l  ~ + [nJ(1 + n) ] l~ l  ' 
a,~a~* , -  1 + ~  (1 + al~,l~) ~ t> 0 (34) 

8~2s =- ,~ [3 f f l  2 with K /> 0 (35) 

Having  subtracted the effect o f  the var ia t ion of  the boundary  condit ions in 

82s~, we see that  the Glansdor f f -Pr igogine  (11~ criterion gives at 8~2s1 along the 
direction of  mot ion  as 

at 3,2s1 = - K[(X - qg) 13ffl2 _ �89 3ff 3g + if* 3y 3g)] (36) 

and  a round  ff = 0, g = r~ we have 

a t3~2s>/O for  ~7 ~<'q~ 

a t 3 f l s < O  for  ~ > %  

while a round  

= 7c, we have 

I l =Tq Z - 1  

at 8t2s > 0 (37) 

We m a y  conclude in complete  accordance with previous results ~6,7,16~ that  
the state ~ = 0, g = ~7 becomes unstable at  threshold,  where it bifurcates to 
an infinite set o f  stable states 

TN 11/2 ~r 
= - 7o)J e , = 7o 

Anothe r  picture of  this m a y  be given in the following way:  Since 
po(a ,  a , )  is the probabi l i ty  for  the system to be in the macroscopic  state a, ~*, 
the evolut ion of  this state being given by  a = - a G / 8 a * ,  we m a y  interpret  

G(a, a*) as a kinetic potent ia l  since f rom (31) it is easy to see tha t  dx~ a and 

dG are propor t ional .  Since G is defined th rough  (17) and  (21), we obtain 
dG = 0 at  the s ta t ionary  states, while d~G/d]al 2 is p ropor t iona l  to 
(~/c -- 7)/(1 + r~) at (~ = 0, g = r~) and  "qc07 - r~c)/V(1 + "%) at  

{1~1 = [ T N I 2 x ) ( 7 1  - ~7~)11/2e'~, g = "q~}- 

So the condit ion d2G/dJal 2 >1 0 is verified for  the stable s ta t ionary states. 
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Furthermore, the probability of small fluctuations around the macroscopic 
stationary state may be written, using (22) (for k << 1) 

P(Sff,8~*) = exp 1 -~ /  ~c - v + 7--N 1ff12 [3ff12 

which on the equilibrium branch reduces to 

exp( ~c-~IS~[2}l+-r/ 

and on the nonequilibrium branch to 

e x p ( -  1--~1 (~/ _ ~/c)[8~[2} 

5. C O N C L U S I O N  

Having introduced explicitly the pumping as a dynamical process in the 
laser model we studied, and having developed the density matrix in a series 
of orthogonal spin operators, we were able to derive in the low-concentration 
approximation a set of two coupled kinetic equations for the density matrix 
of this system. 

In the Markovian limit we recover Mandel's equation for a high- 
intensity laser, while the macroscopic description of the system is compatible 
with Lieb and Hepp's (16~ results. Furthermore, this macroscopic description 
invites analogies with the thermodynamic description since quantities such 
as the entropy production may be defined and found to be positive. The 
change of this quantity due to thermodynamic-like forces is negative, while 
the stability of the system around its stationary macroscopic state may be 
discussed within the framework of Glansdorff-Prigogine's evolution criterion 
without any local equilibrium assumption. 

It should be interesting now to study the fluctuations around the 
macroscopic variables as defined in (26) in order to gain a deeper insight into 
the relation between microscopic and macroscopic concepts in this problem 
and to study the emergence of the macroscopic state ~, ~*. Moreover, a 
detailed knowledge ofP ~, P +, and P-  [cf. (10)-(11)] would also be interesting 
since they contain all the information we need to describe the spin's behavior 
in the laser process. 

A P P E N D I X  

The matrix elements (~]J ( t ) ]~ ' )  appearing in (4) are represented by 
the same vertices as the ones defined in I. Their contributions are 
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<0. tqS,+al - l .  t* + 1) - ~7-1,3m..o(N + 1) + }/z)l/z~Tz 
- C G , , , o ( N -  � 8 9  

<l , ,  ~ lS ,+a lO, ,  t~ + 1> = ~ , , . o [ , e ~ , ( N  + a + �89 ~ 

- ~ h ( N -  �89 - x ]  

(0,, t~[S~-a+]l,, t, - 1) -- W~,3M,,o(N + �89 -~ 

- r/-1,3m,.o(N + 1 - 1/z)1/2~ 1 

( -  1,, ~ l s , - a  + Io,, ~ - 1) = G , , . & ? , ( N  + 1 + b,)1~% -~ 

- ,~ -~ , (N - k~  + 01~%q 

(0,, mlS,+a +] - 1,, m - 1) = ~7-h3M,,o(N + �89 

- 71h3M.o(N + 1 - �89 

0 , ,  ~lS,+a'~{0,, ~ - t> : a~,,o[,~-l ,0v + �89 -~ 

- r  + 1 - ~ , ) " % q  

(0,, mlS , -a l l , ,  t~ + 1) = ~'3M,,o(N + 1 + {t,)~2W~ 

- ~ - h 3 M , . o ( N -  �89 

<- 1,, rqs,-al0, ~ + 1) = 6M,,O[~lh(N + 1 + {tz)~'2~7~ 
- ~ - ~ , ( N  - ~ , ) ~ % - q  

(tz, tz~]aa~+llz + 1, t z ~ -  1> = [(N + 1 + �89 + �89 
- [ ( N  - � 8 9  + 1 - �89162 

(~, m la+a . l~  - ~, m + 1) = [ (N + }~ ) (N  + 1 + �89 -~ 

- [ ( N  + ] - �89 - - ~ , ) d ~ % - %  ~ ( A . 0  

The long-t ime divergences of  each contr ibut ion of  (4) are avoided by resum- 
ruing the spin and field p ropaga to r s  by their respective heat -bath  coupling. 
This has been done explicitly in I for  the pho ton  propaga tor ,  whose t ime 
dependence F(N, t) obeys the following equat ion:  

OtF(N, t) = dr~z ~ Ig,~P cos[(o,,~ - ~o)(t - ~-)] 
/r 

x {N + �89 - [(N + �89 + {)]I/2v~}F(N, ~-) (A.2) 

Due to the singular character  of  the heat  bath,  the Laplace t r ans form of  this 
p ropaga to r  may  be wri t ten 

with 

f(N, z) = (z + x) -1 + O(IIN) 

2 

1r 

(A.3) 
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Performing a R6sibois-De Leener resummation ~17~ of the spin propagator, 
we obtain for the plus and minus spin propagators 

[ )] f + ( z )  = z + ~ IP~12<N + 1>. + ~ Ig~I~<N>. 
t~ 

x z + z~-~ <2N + l>o(lp= + + Ip=-[2) 

1 
_ ] -1 (A.4) + - ~ - ~ h 4 ~ ( N ( N  + 1)>.(IP~+l 2 IP.-12) = 

t~ J 

or, for zero-photon heat baths 

f * ( z )  = (z  + 7"~)/z(z + 7) (A.5) 

Taking now the irreducibility condition associated with the vacuum 10)(0], 
we find that the diagonal part of p obeys the following equation: 

f2 ~tP~o'~(t) = ~ dr  G~o"e~(t - r)p~oe~(r), E, ~' = O, z (A.6) 

G~o ''e~ contains the following contributions: 

1. The explicit photon-cavity coupling as calculated in I and appearing in 

- x N  + x(N + 1)~ 2 (A.7) 

2. The explicit spin-pumping contribution is in the singular heat-bath 
approximation and in the thermodynamic limit 

1 
~h 2 ~, ~ {Ig=+ 12[n-l, SM,.o((N + 1).)1/2~1. 

Na 

_ rlz,3u,,oN~/2~7- l~]~u,.o[~/1,((N + �89 1= 

_ n - l , ( ( g  + �89 + [g=-I~[w-l,~,.o 
x N~Izn-l=~71,3M,.o((N + 1),~)~/2r/l~,]3M.O['q 1, 
x ((m + {)~)lt2nl= - V-I,((N + �89 (A.8) 

leading, for zero-photon baths, to 

' [ ~h~ (~ , - i , o  - 8~,+I.0~ ~') ~ Ip~+l ~ 
- ~ (A.9) 

~, -~ ,o~  -~, - ~ ,+~.o)Z lp~-I 2] 
cr d 

or - 7  in G~o ~'~ and ~,~ in G~o ~'~ with 

2 
r = ~ ~ (Ig=+127 + It'"-12) 
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in 

in 

in 

in 

where 

and  

~ ( I g = + l  = -  Ip=-I =) 
7 = E=(IP=+t= + lg _i~.) 

The remaining graphs  appear ing  in the kernel  are of  one- or multiple-spin 
type. Consider ing only the on-spin terms,  this approx imat ion ,  valid for  low 
concentra t ions  of  active material ,  is consistent with the factor izat ion of  the 
density m a t r i x - - t h e  kernel  is the sum of  the following contr ibut ions:  

G~o~ R(z ) [ (2N + 1) - (N + 1)7 2 - N7 -2] 

G~o~ R(z)[1 + (U + 1)7 2 - N7 -21 

G(o~,~ R(z)[1 - (U + 1)7 2 + N7 -2] 

G(o~'~): R(z ) [ (2N + 1) + (N + 1)7 2 + N7 -2] 

with 

R(z)  = F + ( z  + i (~  - to)) + F - ( z  - i(~) - w)) 

{. 
F+(z) = (1/2,0 ~ dz' f ( z  - z ' ) f+(z ') 

In the Markov ian  limit o f  (A.6) (according to the short  m e m o r y  of  the heat  
baths we m a y  safely assume tha t  this limit exists) only R(0) appears  and is 
calculated to be 

2NA2(X + y) 2 ~.~ , 
q = R(O) = A2 + (X + - ~ J ~ X  7) = Nq'  (A.10) 

with A = ~ - co a n d f ( x ,  7) ~- 2x -1  for  7' < X, or  X-1 for  7' > X. The  case 
7' < X corresponds  to a gas laser, while the case 7 > X occurs for  a solid-state 
laser, so that  q(gas laser) _ 2q(solid-state laser). 
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